這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。
Announced in 2016, Gym is an open-source Python library developed to help with the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research, making published research study more easily reproducible [24] [144] while providing users with a simple user interface for engaging with these environments. In 2022, brand-new advancements of Gym have been transferred to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support learning (RL) research on computer game [147] using RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing representatives to resolve single jobs. Gym Retro gives the ability to generalize between video games with comparable ideas however various looks.
RoboSumo
Released in 2017, RoboSumo is a world where humanoid metalearning robotic representatives at first do not have understanding of how to even walk, however are offered the goals of discovering to move and to press the opposing agent out of the ring. [148] Through this adversarial learning process, the representatives learn how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and placed in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had learned how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives could produce an intelligence "arms race" that could increase a representative's ability to operate even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a group of 5 OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human players at a high skill level completely through trial-and-error algorithms. Before ending up being a group of 5, the first public presentation occurred at The International 2017, the annual premiere championship competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually discovered by playing against itself for two weeks of genuine time, and that the knowing software application was a step in the instructions of creating software that can deal with complicated jobs like a cosmetic surgeon. [152] [153] The system uses a kind of support knowing, as the bots find out over time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete team of 5, and they had the ability to beat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional players, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later on that month, where they played in 42,729 overall video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has actually demonstrated making use of deep reinforcement knowing (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes device learning to train a Shadow Hand, a human-like robot hand, to manipulate physical items. [167] It discovers completely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI took on the item orientation problem by utilizing domain randomization, a simulation approach which exposes the student to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, wiki.vst.hs-furtwangen.de aside from having motion tracking video cameras, likewise has RGB cameras to allow the robot to manipulate an approximate item by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl might fix a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to design. OpenAI did this by enhancing the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of producing progressively harder environments. ADR differs from manual domain randomization by not requiring a human to define randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models developed by OpenAI" to let developers get in touch with it for "any English language AI task". [170] [171]
Text generation
The business has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")
The original paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's website on June 11, 2018. [173] It showed how a generative design of language could obtain world understanding and procedure long-range dependencies by pre-training on a varied corpus with long stretches of adjoining text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the follower to OpenAI's original GPT model ("GPT-1"). GPT-2 was announced in February 2019, with only minimal demonstrative versions initially released to the general public. The full variation of GPT-2 was not immediately launched due to issue about possible abuse, consisting of applications for composing fake news. [174] Some professionals revealed uncertainty that GPT-2 presented a substantial hazard.
In reaction to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to detect "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the total version of the GPT-2 language design. [177] Several sites host interactive demonstrations of various instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, illustrated by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not further trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI stated that the full variation of GPT-3 contained 175 billion criteria, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 designs with as few as 125 million specifications were likewise trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and might generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing in between English and Romanian, and in between English and German. [184]
GPT-3 dramatically enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or encountering the fundamental ability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not right away launched to the general public for issues of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month complimentary personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can develop working code in over a dozen programs languages, many efficiently in Python. [192]
Several issues with glitches, design defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has actually been accused of discharging copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), gratisafhalen.be capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar test with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, analyze or generate approximately 25,000 words of text, and compose code in all significant programming languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually decreased to expose different technical details and statistics about GPT-4, such as the exact size of the design. [203]
GPT-4o
On May 13, 2024, OpenAI announced and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained cutting edge lead to voice, multilingual, and vision standards, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly useful for business, start-ups and developers looking for to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and wiki.vst.hs-furtwangen.de o1-mini models, which have been designed to take more time to consider their reactions, leading to greater precision. These designs are particularly effective in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI revealed o3, the successor of the o1 reasoning design. OpenAI also revealed o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these models. [214] The design is called o3 instead of o2 to prevent confusion with telecoms services supplier O2. [215]
Deep research study
Deep research study is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to carry out substantial web surfing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to analyze the semantic resemblance in between text and images. It can especially be used for image classification. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather handbag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and produce matching images. It can create images of sensible items ("a stained-glass window with an image of a blue strawberry") in addition to things that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an upgraded variation of the model with more realistic outcomes. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a new basic system for converting a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more powerful design better able to create images from complicated descriptions without manual timely engineering and render complex details like hands and text. [221] It was released to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora
Sora is a text-to-video model that can create videos based on brief detailed prompts [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The maximal length of created videos is unidentified.
Sora's advancement team named it after the Japanese word for "sky", to represent its "limitless innovative potential". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos licensed for that purpose, however did not expose the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, stating that it could generate videos as much as one minute long. It likewise shared a technical report highlighting the approaches used to train the model, and the design's capabilities. [225] It acknowledged a few of its shortcomings, including battles mimicing complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "impressive", but noted that they need to have been cherry-picked and may not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, higgledy-piggledy.xyz significant entertainment-industry figures have shown considerable interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the innovation's capability to produce realistic video from text descriptions, mentioning its possible to revolutionize storytelling and material production. He said that his enjoyment about Sora's possibilities was so strong that he had decided to stop briefly plans for expanding his Atlanta-based motion picture studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a big dataset of varied audio and is likewise a multi-task design that can perform multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to start fairly however then fall into mayhem the longer it plays. [230] [231] In popular culture, initial applications of this tool were used as early as 2020 for the web psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs tune samples. OpenAI specified the tunes "reveal regional musical coherence [and] follow conventional chord patterns" but acknowledged that the tunes lack "familiar larger musical structures such as choruses that duplicate" and that "there is a significant gap" between Jukebox and human-generated music. The Verge stated "It's technically remarkable, even if the results sound like mushy variations of songs that might feel familiar", while Business Insider specified "surprisingly, some of the resulting tunes are memorable and sound legitimate". [234] [235] [236]
User interfaces
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches machines to dispute toy issues in front of a human judge. The purpose is to research study whether such a method might help in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of 8 neural network designs which are typically studied in interpretability. [240] Microscope was produced to evaluate the functions that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, various variations of Inception, and different versions of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an expert system tool developed on top of GPT-3 that supplies a conversational user interface that enables users to ask questions in natural language. The system then responds with an answer within seconds.
這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。